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Sitka spruce (Picea sitchensis) samples (491) from 50 different clones as well as 24 different tropical
hardwoods and 20 Scots pine (Pinus sylvestris) samples were used to construct diffuse reflectance
mid-infrared Fourier transform (DRIFT-MIR) based partial least squares (PLS) calibrations on lignin,
cellulose, and wood resin contents and densities. Calibrations for density, lignin, and cellulose were
established for all wood species combined into one data set as well as for the separate Sitka spruce
data set. Relationships between wood resin and MIR data were constructed for the Sitka spruce
data set as well as the combined Scots pine and Sitka spruce data sets. Calibrations containing only
five wavenumbers instead of spectral ranges 4000-2800 and 1800-700 cm-1 were also established.
In addition, chemical factors contributing to wood density were studied. Chemical composition and
density assessed from DRIFT-MIR calibrations had R 2 and Q 2 values in the ranges of 0.6-0.9 and
0.6-0.8, respectively. The PLS models gave residual mean squares error of prediction (RMSEP)
values of 1.6-1.9, 2.8-3.7, and 0.4 for lignin, cellulose, and wood resin contents, respectively. Density
test sets had RMSEP values ranging from 50 to 56. Reduced amount of wavenumbers can be utilized
to predict the chemical composition and density of a wood, which should allow measurements of
these properties using a hand-held device. MIR spectral data indicated that low-density samples
had somewhat higher lignin contents than high-density samples. Correspondingly, high-density
samples contained slightly more polysaccharides than low-density samples. This observation was
consistent with the wet chemical data.
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INTRODUCTION

The structure of wood has been the subject of many studies
based on vibrational spectroscopic methods such as near-infrared
(NIR) (1-5), mid-infrared (MIR) (6, 7), and Raman spec-
troscopies (8). All of these methods provide information on the
molecular structure of wood and, in many cases, solid or ground
wood samples can be analyzed directly without laborious
preparation. Hence, it is possible to get information on the
molecular level interactions between wood polymers in their
native state. Moreover, these methods are both rapid and
nondestructive.

Most of the published studies addressing the assessment of
solid wood properties by spectroscopic methods have been
conducted using NIR spectroscopy. The chemical compositions/
components (3,9, 10), dry matter content (11), and strength (2,
12, 13), and density (1, 2, 11, 12) of solid wood samples have

been estimated from the NIR spectral data combined with
multivariate data analysis methods. Furthermore, morphological
characteristics were assessed from dry (4, 12) and green (14)
wood samples.

There are a few publications also on the application of the
MIR spectroscopy to determine wood density (6), chemical
constituents (6,15-17), and chemical structures (18). Raman
spectroscopy has been applied to quantify chemical constituents
(19-21) and density (22) of the solid wood samples. Further-
more, calibration between morphological characteristics of the
solid wood samples and Raman spectral data has been estab-
lished (8).

These approaches have been shown to be powerful tools to
assess, often complex, physical and chemical properties of wood
at the laboratory scale. Extension of this to the rapid assessment
of the physical and chemical properties, such as density and
lignin content, would be of great benefit in tree improvement
programs. Additionally, the implementation of these techniques
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to postharvest (felling) screening can also be taken advantage
of in sawmills and pulp mills.

Here the densities and lignin and cellulose contents of Sitka
spruce, Scots pine, and tropical hardwood samples were
estimated by means of diffuse reflectance mid-infrared Fourier
tranform (DRIFT-MIR) spectroscopy linked with partial least-
squares (PLS) analysis. Furthermore, the effects of the reduced
spectral range on the predictive abilities of the models were
investigated. MIR spectroscopy has been mostly used for
qualitative characterization of the solid wood samples. There
are only a limited number of MIR-based studies dealing with
quantification of the solid wood properties (6, 15-17), and to
our knowledge MIR-based models including a wide scale of
natural variation in density and lignin and cellulose contents
have not been published.

MATERIALS AND METHODS

Samples.Sitka spruce (Picea sitchensis) cored samples (493; 8 mm
in diameter) from 50 different 15-year-old clones exhibiting significant
phenotypic variation was cored in Newcastleton (Scotland). Scots pine
(Pinus sylVestris) wood cored samples (20) were taken at the Forest
Research site in Monaughty (Scotland). Coring was performed at breast
height (130 cm) of the trees. In addition, 24 blocks of tropical hardwood
samples from Ghana were obtained from Forest Research, Scotland.
The hardwood samples are listed inTable 1. Prior to the chemical
analysis, samples were freeze-dried and ground in a Glen Creston
laboratory mill to pass a 1000µm sieve.

Density.Densities of the core samples were calculated by measuring
fresh wood dimensions and weights of the freeze-dried samples.
Densities of the Sitka spruce and Scots pine samples were in the range
of 232-494 and 329-459 kg m-3, respectively. Hardwood samples
had densities ranging from 323 to 878 kg m-3. Densities of the
hardwood samples were determined by measuring dry wood dimensions
and weights.

Wet Chemical Analyses.Wood resin was removed from the ground
wood samples (0.5 g) by Soxhlet extraction for 3 h with ethyl acetate.
Extracts were evaporated to dryness by rotary evaporation and then
weighed. Selected samples were also extracted with hexane and acetone
to compare the amounts of extracts removed with all three solvents.
The yield of acetone extracts was higher [average difference of 0.35%
(w/w)] than that of ethyl acetate soluble substances, whereas hexane
removed less extractable substances than ethyl acetate [average
difference of 0.22% (w/w)].

R-Cellulose was isolated from duplicate samples (50 mg of the
extractive-free sample) according to the method of Brendel et al. (23).
Lignin contents of the extractive-free samples (5 mg) were determined
in triplicate using an acetyl bromide method (24). In this method
lignocellulosic samples are dissolved in the mixture of acetyl bromide
and glacial acetic acid (1:3, v/v), and the absorbance at 280 nm is
measured. Lignin contents of selected samples were also determined
as insoluble Klason lignin that gave∼4.8% (w/w) higher lignin content
than the acetyl bromide method.

DRIFT-MIR Spectroscopy. DRIFT-MIR spectra of the ground
wood samples were collected by a Bruker IFS 66 spectrometer using
a Specac DRIFT accessory over the range from 4000 to 700 cm-1 and
with a resolution of 4 cm-1. A DTGS detector was used. Four hundred
scans were accumulated prior to the Fourier transformation. IR spectra
were expressed in the values of the Kubelka-Munk (KM) function.
Parallel spectra from each sample were recorded, and an average
spectrum was utilized in calibrations. Due to the large amount of
samples, IR spectra were recorded from undiluted wood meals (particle
size< 1000µm). Two spectra from each sample were recorded, and
an average spectrum was utilized. The particle size of the wood powders
and roughness of the solid wood surfaces affect the IR band intensities
(25). Three parallel DRIFT-MIR spectra of a Sitka spruce sample are
presented inFigure 1. Spectra exhibit small differences in the region
of 1180-1000 cm-1 as has earlier been detected by Faix and Böttcher
(25) and Michell (26).

Multivariate Data Analysis. DRIFT-MIR spectra with density and
wet chemical data were analyzed using a Simca-P 10.0 software
package. The spectral ranges of 4000-2800 and 1800-700 cm-1 were
used for PLS modeling. In addition, impacts of the reduced wavenumber
areas on the reliability of the models were studied. Spectral data were
mean-centered (Xmatrix), whereas densities and wet chemical data (Y
matrix) were both mean-centered and scaled to unit variance. Prior to
the calculation of the PLS components, the spectral data were also
filtered using an orthogonal signal correction (OSC) procedure. OSC
is a spectral filter commonly used with PLS calibration. It removes
spectral information unrelated to the response parameters of interest
(27). OSC pretreated models had better fit and predictive values than
models constructed from unfiltered data. Therefore, all of the models
shown in this paper have been pretreated with the OSC procedure.

All PLS models were internally and externally validated. Internal
validation was based on cross-validation (CV). In this procedure some
of the original spectral data were used to construct the model from
which the remaining of the spectral data was estimated. For this purpose,
the squares of the differences between predicted and observed values
were added together to obtain the predictive residual sum of squares
(PRESS), which is a measure of the predictive power of the model
being tested (27). In this paper the PRESS is re-expressed asQ2, the
ability of a model to predict. The accuracy of the calibrations and test
set predictions is presented here by root-mean-square errors of
estimation (RMSEE) and prediction (RMSEP), respectively. RMSEE
and RMSEP are expressed in units of the original measurement.

Sitka spruce (248), pine (20), and 24 tropical hardwood samples
were used to establish relationships between wood chemical constituents
and density, whereas 243 Sitka spruce samples were used for external

Table 1. Tropical Hardwood Samples

common name scientific name family

aprokuma Antrocaryon micraster Anacardiaceae
idigbo Terminalia ivorensis Combretaceae
afara Terminalia superba Combretaceae
kokrodua Pericopsis elata Leguminosae
cobaiba Copaifera spp. Leguminosae
dahoma Piptadeniastrum africanum Leguminosae
ogea Daniellia ogea Leguminosae
awiemfo-samina Albizzia ferruginea Leguminosae
African mahogany Khaya ivorensis Meliaceae
avodire Turreanthus africanus Meliaceae
sapele Entandrophragma cylindricum Meliaceae
scented guarea Guarea cedrata Meliaceae
kosipo Entandrophragma candollei Meliaceae
cedro Cedrela Mexicana Meliaceae
African walnut Lovoa trichilioides Meliaceae
iroko Chlorophora excelsa Moraceae
ekki Lophira alata Ochnaceae
abura Mitragyna ciliata Rubiaceae
opepe (kusia) Nauclea diderichii Rubiaceae
makore (baku) Tieghemella heckelii Sapotaceae
mansonia Mansonia altissima Sterculiaceae
nyankom Tarrietia utilis Sterculiaceae
obeche (wawa) Triplochiton scleroxylon Sterculiaceae
danta Nesogordonia papaverifera Sterculiaceae

Figure 1. Three parallel DRIFT-MIR spectra of a ground (<1000 µm)
Sitka spruce sample. Differences due to particle size variation are observed
in the region of 1180−1000 cm-1.
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verification of the models built from Sitka spruce and all of the wood
samples. Details of the data sets used to construct and verify the PLS
models are shown inTable 2.

Loading line plots of the calibrations reveal spectral differences
characteristic for each PLS component. Here the loading spectra are
plotted from the corresponding unfiltered data, because preprocessing
of the spectral data made chemical interpretation of the loading plots
(regression coefficients) more complicated.

RESULTS

Density. Density models were constructed from all wood
species (Sitka spruce, Scots pine, and tropical hardwoods). In
addition, separate calibrations from clonal Sitka spruce samples
were built up to compare the predictive abilities of the models.
Furthermore, impacts of the reduced wavenumber region on the
predictive values of the PLS models were studied.

Wood samples were separated according to their densities in
the direction of the first principal components. PLS calibration
between density values and DRIFT-MIR data of all wood
species is shown inFigure 2. The model hadR2 andQ2 values
of 0.89 and 0.88, respectively. RMSEE and RMSEP values for
the model were 35 and 56 density units, respectively, which
indicated that the model does not provide accurate density values
for the samples not included in the calibration. Nevertheless,
the accuracy of the IR-fitted density model is good enough to
separate between very high- and low-density wood samples.

The spectral ranges of 4000-2800 and 1800-700 cm-1 were
narrowed to only a few wavenumbers (3392, 1592, 1267, and
1096 cm-1) to evaluate its impact on the RMSEE, RMSEP,
andr2 values of the density models. The known most significant
wavenumbers influencing the density variation were selected
from the loading line plot that revealed wavenumbers contribut-
ing to the chemical differences between high- and low-density
samples (Figure 3). Interestingly, the narrower wavenumber
range did not have major impacts on the model descriptors and
external validation (Table 3). These results indicate that it is
possible to reduce the number of wavelengths remarkably
without decreasing the predictive ability of the model. This
reliability is a promising result and vital for the design and
development of a cost-effective portable device for screening
and analysis.

The loading line plot exhibits chemical structures beyond the
wood density variation (Figure 3). Positive bands at 1720, 1592,
1457, and 1239 cm-1 in Figure 3 are related to the high-density
samples, whereas those of negative bands at 3392, 2862, 1510,
1267, 1096, 860, and 801 cm-1 characterize low-density
samples. Hardwood samples had the highest densities, and
therefore the positive bands in the loading line plot reflected
structures of the chemical constituents enriched in these samples.
The relatively broad MIR absorption range at 1760-1720 cm-1

encompasses signals arising from acetyl groups of xylan and
probably to lesser extent from wood resin. The absorption at
1592 cm-1 contains contributions from phenolic compounds,
polysaccharides, and lignin. Furthermore, the band at 1239 cm-1

has been assigned to C-O vibrations of the acetyl groups of
xylan (28). These band assignments indicated that xylan is a
major chemical factor contributing to the higher densities of
the hardwood species. Of the negative MIR bands in the loading
spectrum, the bands at 1510 and 1267 cm-1 have been reported
to originate from guaiacyl lignin of softwoods (29).

The relationship between density and MIR spectral data for
the clonal Sitka spruce samples is shown inFigure 4. Calibra-
tion had aR2, Q2, and RMSEE values of 0.66, 0.65, and 26
respectively, whereas the RMSEP for a test set was 55. The fit
for the Sitka spruce samples was inferior to that of the calibration
constructed from all wood samples. Standard error of prediction
for the test set was 55, being about the same as that for the
model built from both hardwood and softwood samples.

Infrared spectral differences between high- and low-density
Sitka spruce samples are shown in the loading spectrum of the
PLS model (Figure 5). Characteristic bands for the low-density
samples (1580, 1478, 1278, 1171, and 1065 cm-1) result from
structures of lignin (30). Positive bands inFigure 5 are
associated with high-density samples. A broad absorption region

Table 2. Summary of the Chemical and Density Data of the Sitka
Spruce, Scots Pine, and Tropical Hardwood Samples Used in
Calibrations and External Validation

Sitka spruce

calibration
set (249)

test set
(242)

Scots pine
(20)

tropical
hardwoods

(24)

lignin, % (w/w)
av 23.6 23.0 20.8 25.0
min−max 19.8−29.4 20.3−26.9 19.2−23.0 19.1−30.7
SD 1.5 1.4 1.2 2.8

cellulose, % (w/w)
av 44.3 45.4 44.4 39.9
min−max 35.5−51.3 37.7−51.4 40.5−46.8 32.0−47.8
SD 2.7 2.6 1.9 3.9

density, kg/m3

av 344 355 400 575
min−max 232−492 267−462 329−459 353−878
SD 43.3 42.2 37.2 115

wood resin, % (w/w)
av 0.7 0.7 3.0 1.7
min−max 0.3−9.5 0.3−2.9 1.7−5.6 0.2−4.2
SD 0.3 0.3 1.0 1.1

Figure 2. Calibration of Sitka spruce, Scots pine, and tropical hardwood
densities and DRIFT-MIR spectral data. R 2, Q 2, and RMSEE for calibration
are 0.89, 0.88, and 34.7, respectively.

Figure 3. PLS loading plot revealing DRIFT-MIR spectral differences
between high- and low-density samples (all samples; Sitka spruce, Scots
pine, and tropical hardwood included). Positive and negative bands are
associated with high- and low-density samples, respectively.
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showing maximum at 3400 cm-1 includes different O-H
vibrations of polysaccharides (31). Furthermore, high-density
samples showed a band at 1507 cm-1 that is associated with
lignin, whereas the bands at 1456 and 1420 cm-1 can encompass
vibrations from both from lignin and polysaccharides. MIR
absorptions at 1373 and 1241 cm-1 have been assigned to C-H
vibrations of polysaccharides and C-O stretching of acetyl
groups in softwood glucomannans, respectively (28). Lignin
band absorptions in the loading line plot indicated that high-
and low-density samples can have some dissimilarity in their
lignin amounts and structures. It has been shown that the
condensed aromatic ring has asymmetric aromatic ring vibration
at lower wavenumbers than that of the noncondensed ring.
Consequently, low-density samples can possibly contain more
condensed guaiacyl units than those of high-density samples.
However, these results have yet to be confirmed by another
method, such as solid-state NMR or wet chemical methods. MIR
bands in the loading spectrum also revealed slight differences

in the amount of lignin and polysaccharides contents of the high-
and low-density samples. In agreement with earlier results, low-
density samples contained somewhat higher amounts of lignin
than high-density samples (6, 32). Correspondingly, high-density
samples included more cellulose than low-density samples.

Density values for the individual wood components, cellulose,
hemicelluloses, and lignin are very close to each other. The
density for the pure wood cell wall substances is 1.5 g/cm3 (33).
Hence, compositional variation between high- and low-density
samples probably arises from the cell wall thickness. It is known
that the lignin content of the middle lamella is higher than that
of the secondary cell wall (34). Therefore, the proportion of
the compound middle lamella is higher for the thin-walled
tracheids than for thick-walled tracheids.

Lignin Content. Lignin and cellulose calibrations were
conducted on all wood species and separately on cloned Sitka
spruce samples. Acetyl bromide lignin contents for the Sitka
spruce samples ranged from 19.8 to 29.4% (w/w), and the
average value was 23.3 (Table 2), whereas lignin contents for
the Scots pine samples were in the range of 19.2-23.0% (w/
w) (Table 2). The amounts of lignin for the tropical hardwoods
varied from 19.1 to 30.7% (w/w) (Table 2).

Samples were segregated according to their lignin contents
in the PLS analysis. Calibration between lignin data of all the
wood samples is shown inFigure 6. The relationship hadR2,
Q2, and RMSEE values of 0.78, 0.77, and 1.0, respectively,
whereas RMSEP for the separate test set was 1.6. Calibration
of the Sitka spruce lignin contents and DRIFT-MIR data gave
R2 (0.74) andQ2 (0.73) values comparable to those of the
illustrated model (Figure 7). The standard error of prediction
for the Sitka spruce test set data was 1.8, slightly higher than
that for the model above.

Table 3. Summary of PLS Models

Sitka spruce all wood sampleswavenumbers/regions included
in constructing the models R 2 Q 2 RMSEE RMSEP no. of PCsa R 2 Q 2 RMSEE RMSEP no. of PCsa

density 4000−2800 and 1800−700 0.66 0.65 25.7 55.3 1 0.89 0.88 34.7 56.1 1
3392, 1592, 1267, 1096 0.86 0.84 36.8 53.0 1
1739, 1510, 1375, 1267, 1129 0.62 0.61 27.2 50.0 2

lignin 4000−2800 and 1800−700 0.74 0.73 0.8 1.8 2 0.78 0.77 1.0 1.6 3
1600, 1510, 1273, 1220, 1077 0.70 0.69 0.9 1.9 2 0.70 0.69 1.1 1.7 2

cellulose 4000−2800 and 1800−700 0.67 0.66 1.6 3.7 1 0.65 0.65 1.8 3.3 1
1733, 1373, 1179, 1133, 1116 0.60 0.59 1.7 3.4 2 0.62 0.61 1.9 2.8 2

wood resin 4000−2800 and 1800−700 0.94 0.93 0.2 0.4 1 0.93 0.93 0.3 0.4 1
2930, 2856, 1698, 1456, 1154 0.77 0.73 0.4 0.5 3 0.84 0.83 0.4 0.5 2

a Number of principal components.

Figure 4. Calibration of Sitka spruce densities and DRIFT-MIR spectral
data. R 2, Q 2, and RMSEE for calibration are 0.66, 0.65, and 25.7,
respectively.

Figure 5. Loading plot revealing DRIFT-MIR spectral differences between
high- and low-density Sitka spruce samples. Positive and negative bands
are associated with high- and low-density samples, respectively.

Figure 6. Calibration between lignin content and DRIFT-MIR spectral data
of Scots pine, Sitka spruce, and tropical hardwood samples. R 2, Q 2,
and RMSEE values for the calibration are 0.78, 0.77, and 1.0, respectively.
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Relationships between lignin contents and MIR data were
constructed from the characteristic lignin bands (1600, 1510,
1273, 1220, and 1077 cm-1) shown in Figure 8. Reduced
numbers of specific wavenumbers did not have a significant
effect on the error of predictions for calibration and external
data sets (Table 3).

Both of the models predicted lignin contents of the calibration
set reasonably accurately, whereas they provided rough estimates
of the lignin amounts for samples not included in the calibration
data set. Yeh et al. (3) reported similar conclusions in their study
on the NIR reflectance spectroscopic determination of the lignin
content. However, the prediction accuracy of this magnitude
can be useful in applications where a “few percent” precision
is acceptable. Of the potential applications, tree-breeding
programs can benefit from the fast approximation of the lignin
content.

r-Cellulose Content.Sitka spruce clonal samples had a large
variation in the R-cellulose content [35.5-51.4% (w/w)],
whereas those for the Scots pine and tropical hardwood samples
were in the range of 40.5-46.8 and 32.0-47.8% (w/w),
respectively (Table 2). Samples are distinguished according to
their cellulose contents in the direction of the first principal
component. The correspondingR-cellulose calibration including
all wood samples had fit andQ2 values of 0.65 and 0.65,
respectively (Figure 9). RMSEP for the test set data was 3.3,
higher than that of the corresponding lignin model. One reason
for this can be the several overlapping bands of cellulose and
hemicelluloses in the infrared spectrum. Also, the average
standard deviation (1.5) for the parallelR-cellulose determination
was higher than that for acetyl bromide lignins (0.9), which
undoubtedly contributed to the DRIFT-MIR estimation of
cellulose contents. Meder et al. (6) previously reportedR2 and

RMSEP values of 0.58 and 6.14, respectively, for the DRIFT-
MIR-based calibration on the total carbohydrate content.

Cellulose calibration for the Sitka spruce data set gaveR2

andQ2 values of 0.67 and 0.66, respectively, whereas RMSEE
was 1.7. A test set consisting of the Sitka spruce samples (243)
had a RMSEP of 3.7. The loading spectrum of the cellulose
model exhibited bands characteristic of the Sitka spruce samples
containing high and low amounts of cellulose (Figure 10).
Positive bands (1373, 1179, 1135, 1115, and 1084 cm-1) have
been assigned to cellulose (34, 35), whereas negative bands
(1594, 1510, 1273, 1218, and 823 cm-1) are distinctive of the
guaiacyl lignin (29). These MIR vibrations confirm that the
calibration is based on the spectral differences due to variation
in cellulose content.

Only five characteristic MIR bands for cellulose (1733, 1373,
1179, 1133, and 1116 cm-1) were selected to construct a model
to study the effect of the reduced spectral range on the predictive
ability of the calibrations. Both cellulose models built from the
five cellulose bands had slightly lower RMSEP values (Table
3) than the calibrations including the spectral ranges of 4000-
2800 and 1800-700 cm-1.

Wood Resin Content. The gravimetric amounts of ethyl
acetate extracts in the clonal Sitka spruce samples varied
between 0.3 and 9.5% (w/w). The average content of the ethyl
acetate soluble wood resins was 0.7% (w/w), which is consistent
with the values reported previously for spruce sapwood (37,
38). Core samples that contained high levels of extractives
included knots. Previous studies showed that softwood knots
can contain large amounts of lipophilic extractives (37, 39).

Sitka spruce samples were separated according to their
extractives content in the PLS analysis of the DRIFT-MIR

Figure 7. Calibration between lignin content and DRIFT-MIR spectral data
of Sitka spruce samples. R 2, Q 2, and RMSEE values for the calibration
are 0.74, 0.73, and 0.8, respectively.

Figure 8. Loading spectrum of the first principal component of Sitka spruce
lignin calibration. Positive and negative bands are typical for samples
containing high and lower amounts of lignin, respectively.

Figure 9. Calibration between R-cellulose content and DRIFT-MIR spectral
data of Scots pine, Sitka spruce, and tropical hardwood samples. R 2,
Q 2, and RMSEE values for the calibration are 0.65, 0.65, and 1.8,
respectively.

Figure 10. Loading spectrum of the first principal component of Sitka
spruce cellulose calibration. Positive and negative bands characterize
samples containing higher and lower levels of cellulose, respectively.
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spectral data. Calibration for the extractives contents of the Sitka
spruce samples hadR2, Q2, and RMSEP values of 0.94, 0.93,
and 0.4, respectively (Figure 11). PLS calibration of the amount
of extractives that included both Sitka spruce and Scots pine
samples is shown inFigure 12. The relationship gaveR2 and
Q2 values of 0.93. RMSEE and RMSEP for the calibration data
set were 0.3 and 0.4, respectively.

The loading line plot revealed spectral differences due to
wood resin content. A characteristic band in the loading line
plot for the samples containing higher levels of extractives was
seen at 1697 cm-1, which is derived from the CdO vibration
of carboxylic acids (40). Resin acids are predominating free
carboxylic acids in sapwood, because the majority of the fatty
acids occur as triglycerides in sapwood (41). Furthermore, the
bands at 2927 and 1458 cm-1 in the loading spectrum have
been associated with C-H stretch and bend, respectively (42,
43).

Unlike for the density, cellulose, and lignin models, a reduced
number of wavelengths for the wood resin calibrations increased
RMSEP and RMSEE values for both softwood models (Table
3).

DISCUSSION
RMSEP values of the PLS models shown in this paper were

of the same magnitude as reported earlier for MIR-based
calibrations of the wood properties. Schulz and Burns (44)
reported analogous standard error of prediction (SEP) values
for the lignin and cellulose predictions, whereas Meder et al.
(6) determined wood densities using the DRIFT technique and
reported a RMSEP value of 37 for the density model. Standard
error values for the test set data were higher than those for the
calibration sets. This can partly result from the heterogeneity

of the wood samples, because the analysis area is relatively small
(∼8 mm2) in DRIFT measurements. In addition, density was
measured as an average over the several annual rings, which
probably affected the results. It is known that the density of
wood varies between annual rings as well as within latewood
and earlywood. The particle size of the samples also affects
the DRIFT-MIR spectra in the region of 1200-950 cm-1 (25,
26) (Figure 1). PLS calibrations were also performed by
excluding the spectral range affected by the particle size
variation, and no significant differences in the predictive values
compared to the models including the spectral range of 1200-
900 cm-1 were observed. For example,R2 and Q2 values for
the density model that included all of the wood species were
0.89 and 0.88, respectively, which was the same as for the model
with the broader spectral range (Table 3). OSC pretreatment
and calculation of the average spectra enhanced predictive values
of the models considerably. In addition to the particle size
variation, the precision of the wet chemical methods possibly
contributed to the standard error values of the calibration and
test sets. Some of the models contained outliers that were mostly
due to the poor spectral quality. We did not detect outliers, for
example, resulting from wood resin, in the PLS models built
from Sitka spruce.

For the models, the first principal component was the most
prominent one explaining the majority of the variation between
spectral and other data. For the calibrations constructed from
selected wavenumbers, two or three components needed to be
calculated (Table 3), although the first principal components
accounted for the majority of the variation between spectral data
and other parameters.

Reduced numbers of wavelengths from 2386 to only the 4
or 5 most significant ones resulted in slightly lower RMSEP
values for the calibrations of cellulose and density, whereas that
for the lignin calibration was a little higher. The robustness of
the model with vastly reduced wavenumbers will be of great
benefit for the development of the low-cost hand-held device.
In addition, calibrations including all wood samples had RMSEP
values similar to those of the models constructed only from Sitka
spruce samples, which means that one calibration can be utilized
for predicting properties of several wood species.
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of heat treatment on the behaviour of extractives in softwood
studied by FTIR spectroscopic methods.Wood Sci. Technol.
2003,37, 109-115.

(43) Williams, D. H.; Fleming, I. Infrared spectra. InSpectroscopic
Methods in Organic Chemistry, 5th ed.; McGraw-Hill: Glasgow,
U.K., 1995; pp 28-62.

(44) Schulz, T. P.; Burns, D. A. Rapid secondary analysis of
lignocellulose: comparison of near infrared (NIR) and Fourier
transform infrared (FTIR).Tappi 1990,73, 209-212.

Received for review May 10, 2005. Revised manuscript received August
11, 2005. Accepted November 14, 2005. We thank and acknowledge
the Scottish Executive Environment Rural Affairs Department and the
Scottish Enterprise Proof of Concept Programme for funding this
research.

JF051066M

40 J. Agric. Food Chem., Vol. 54, No. 1, 2006 Nuopponen et al.


